European Network on New Sensing Technologies for Air Pollution Control and Environmental Sustainability - *EuNetAir* COST Action TD1105

INTERNATIONAL WG1-WG4 MEETING on

New Sensing Technologies and Methods for Air-Pollution Monitoring European Environment Agency - EEA Copenhagen, Denmark, 3 - 4 October 2013 Invited Presentation

Action Start date: 01/07/2012 - Action End date: 30/06/2016 - Year 2: 2013-2014

Assessing Human Exposure to Air Pollution in Health Assessment Studies in Europe

Ole Hertel Function in the Action: (WG leader) Aarhus University / Denmark

Measurements from routine monitoring programmes often used in dose-response studies: six cities study etc.

Particulate matter responsible for most of the negative health effects

Since the 1990ties focus on short-term but also long-term effects Personal exposure monitoring: APHEA, APHEA-2, EXPOLIS etc

Simple proxies like distance to road: Brunekref et al.

Modelling based on US studies in many European assessments: Künzli et al., etc

Danish EVA system: Applies most recent dose-response

Long term effects according to Hoek et al. (2013)

Health effects	PM ₁₀ per 10	PM _{2,5} per 10	EC/BC per 1	NO ₂ per 10
	μg/m ³	µg/m³	µg/m³	µg/m³
Total deaths	3,5 % (0,4 % -	6,2 % (4,1% -	6,1 % (4,9 % -	5,5 % (3,1 % - 8
	6,6%)	8,4%)	7,3 %)	%)
Cardiovascular deaths	2 % to 8 % (PM _{10-2,5})	15 % (4 % - 27 %)	4 % to 11 %	-2 % to 36 %
Respiratory deaths	4% to 67%	2,9% (-6% - 13%)	11 %	3 % to 197 %

Danish approach in AIRPOLIFE similar to the one applied in cancer assessment within ESCAPE:

Mix of measurements and model calculations in dose-response determination

Measurements generally used in assessment of short-term effects - dose-response

Model calculations used in long-term effects dose-response - AirPOLIFE and EGEA-2, ECRHS-I & II

TD1105 workshop at the EEA 3-4 October 2013

Trends in nitrogen dioxide in Danish cities

Urban Air Pollution computed with the **Urban Background** model (UBM)

TD1105 workshop at the EEA 3-4 October 2013

AirGIS automatic generation street configuration

Performed calculations for the entire nutrition, cancer, health cohort of 50.000 people & 200.000 addresses

Mapping address level exposure in Danish city

Short-term effects Danish studies

Health endpoint	PM ₁₀	PM _{2.5}	Particle #	NO ₂ / NO _x	СО
Interquartile range, IQR	(7) [#] 13-14 µg/m ³	5 µg/m³	3800-3900	6-7/9 pbb	120 ppb
Cardiovascular death, lag 0-5 days	3%			0 to 1%	0 til 1%
Deaths of stroke	0%			0 to 2%	-2 til 2%
Deaths of respiratory disease all ages, summer & winter, 0-5 d lag	-3 to 1%			-2%	-5%
Cardiovascular hospital admission >65 years old lag 0-3 d, or all ages summer & winter 0-5 d lag	3%* 2%	3%*	0%	0 to 2% 2 % & 3%	1 to 2% 1%
Myocardial infarction summer & winter, 0-5 d lag	0 & 4%			2 % & 4%	2 & 7%
Cardiac arrest outside hospital, 3-4 d lag	5%* (IQR 7)	4%*	3%	2 to 3%	2 to 4%
Mild ischemic (clot) stroke, 0-4 d lag	8%		21%*	11%	10%
Respiratory admission >65 years old, 0- 4 d lag, and for all ages summer & winter 0-5 d lag	4 to 6%* 4%	0%	4%	4 to 6% 0% & 4%	2 to 4% 1 & 3%
Asthma hospital admission 0-18 years old, 0-4/5 d lag	2 to 8% *	9 to 15%*	6-7%	4 to 13%*	0 to 10%
Wheezing among susceptible 0-1 year old & 0-3 year old, lag 2-4 d	21% & 4%		92% & -15%	45%/30% 19%/14%	33% & 7%

Long term effects Danish studies

	NO ₂ per 10 μ g/m ³	NO _x
<u>Mortality</u>		
Total	8 % (CI: 1 - 14 %)	
Cardiovascular illness	16 % (Cl: 3 - 31 %)	
Ischemic	8 % (CI: -11 - 30 %)	
Stroke	9 % (CI: -17 - 42 %)	
Incidents/hospital admission		
Cardiovascular illness		
Stroke, all	5 % (CI: -1 - 11 %)	
	per 43 % increase in NO_2	
Stroke, fatal	22 % (Cl: 0 - 50 %)	
Airwaye disoaso	per $+5$ /6 mercase m NO_2	
COPD	8 % (Cl: 2 - 14 %) per 6 μg/m ³	5 % (CI: 1 - 10 %) per 12 μg/m ³
Asthma (elderly)	12 % (Cl: 4 - 22 %)	
	per 6 µg/m ³	
Lung cancer		9 % (CI: -21-51 %) & 37% (CI: 6-76 %) per 100 μg/m ³

Long term effects Hoek et al. (2013)

Health effects	PM ₁₀ per 10	PM _{2,5} per 10	EC/BC per 1	NO ₂ per 10
	μg/m ³	μg/m³	µg/m³	µg/m³
Total deaths	3,5 % (0,4 % -	6,2 % (4,1% -	6,1 % (4,9 % -	5,5 % (3,1 % - 8
	6,6%)	8,4%)	7,3 %)	%)
Cardiovascular deaths	2 % to 8 % (PM _{10-2,5})	15 % (4 % - 27 %)	4 % to 11 %	-2 % to 36 %
Respiratory deaths	4% to 67%	2,9% (-6% - 13%)	11 %	3 % to 197 %

Recent health assessments indicate that carbon black and possibly also organic carbon may be better indicators of health effects compared with $PM_{2.5}/PM_{10}$

(Jannsen et al. 2012) (Rohr & Wyzga, 2012)

(WHO, 2012)

Also emphasised in Presentation by Bart Elen yesterday

Application of AirGIS/OSPM for exposure study

Exposure bicycling home & work shortest & cleanest

TD1105 workshop at the EEA 3-4 October 2013

Pollen research centre: map local pollen pressure, dose-response, personal prognoses.

Climate change: new plants, highere CO_2 (polinering), more precipitation and higher temperature

Priorities and roadmap

- What do we want to provide on the long term in relation to routine monitoring and public information?
- Micro-sensors should not substitute but supplement routine monitoring devices
- Future routine networks may look very different from todays and include low cost sensors!?
- The green route through the city or access to information about pollutant load at address might be future goals

Priorities and roadmap

- Still many unknowns in respect to health effects - e.g. what in PM is causing negative health effects - constituents, ultrafine?
- Airborne allergens may also be an issue of interest - >20% suffer from hay fever but monitoring still based on 1950/1960 technology
- Assessment of health effects of emissions from agricultural sources (fungal spore, animal material, ammonia)
- Assessment of health effects from wood stoves - 600.000 wood stove devices in DK (biggest single source of PM in DK)

